
M A N N I N G

Nina Zumel
John Mount
FOREWORD BY Jim Porzak

Dottie
Text Box
S A M P L E C H A P T E R

Practical Data Science with R
by Nina Zumel

John Mount

Chapter 8

 Copyright 2014 Manning Publications

vii

brief contents
PART 1 INTRODUCTION TO DATA SCIENCE1

1 ■ The data science process 3
2 ■ Loading data into R 18
3 ■ Exploring data 35
4 ■ Managing data 64

PART 2 MODELING METHODS ..81
5 ■ Choosing and evaluating models 83
6 ■ Memorization methods 115
7 ■ Linear and logistic regression 140
8 ■ Unsupervised methods 175
9 ■ Exploring advanced methods 211

PART 3 DELIVERING RESULTS ..253
10 ■ Documentation and deployment 255
11 ■ Producing effective presentations 287

175

Unsupervised methods

The methods that we’ve discussed in previous chapters build models to predict out-
comes. In this chapter, we’ll look at methods to discover unknown relationships in
data. These methods are called unsupervised methods. With unsupervised methods,
there’s no outcome that you’re trying to predict; instead, you want to discover pat-
terns in the data that perhaps you hadn’t previously suspected. For example, you
may want to find groups of customers with similar purchase patterns, or correla-
tions between population movement and socioeconomic factors. Unsupervised
analyses are often not ends in themselves; rather, they’re ways of finding relation-
ships and patterns that can be used to build predictive models. In fact, we encour-
age you to think of unsupervised methods as exploratory—procedures that help

This chapter covers
 Using R’s clustering functions to explore data and

look for similarities

 Choosing the right number of clusters

 Evaluating a clustering

 Using R’s association rules functions to find
patterns of co-occurrence in data

 Evaluating a set of association rules

176 CHAPTER 8 Unsupervised methods

you get your hands in the data—rather than as black-box approaches that mysteri-
ously and automatically give you “the right answer.”

 In this chapter, we’ll look at two classes of unsupervised methods. Cluster analysis
finds groups in your data with similar characteristics. Association rule mining finds ele-
ments or properties in the data that tend to occur together.

8.1 Cluster analysis
In cluster analysis, the goal is to group the observations in your data into clusters such
that every datum in a cluster is more similar to other datums in the same cluster than
it is to datums in other clusters. For example, a company that offers guided tours
might want to cluster its clients by behavior and tastes: which countries they like to
visit; whether they prefer adventure tours, luxury tours, or educational tours; what
kinds of activities they participate in; and what sorts of sites they like to visit. Such
information can help the company design attractive travel packages and target the
appropriate segments of their client base with them.

 Cluster analysis is a topic worthy of a book in itself; in this chapter, we’ll discuss two
approaches. Hierarchical clustering finds nested groups of clusters. An example of hier-
archical clustering might be the standard plant taxonomy, which classifies plants by
family, then genus, then species, and so on. The second approach we’ll cover is
k-means, which is a quick and popular way of finding clusters in quantitative data.

8.1.1 Distances

In order to cluster, you need the notions of similarity and dissimilarity. Dissimilarity can
be thought of as distance, so that the points in a cluster are closer to each other than
they are to the points in other clusters. This is shown in figure 8.1.

 Different application areas will have different notions of distance and dissimilarity.
In this section, we’ll cover a few of the most common ones:

 Euclidean distance
 Hamming distance
 Manhattan (city block) distance
 Cosine similarity

Clustering and density estimation
Historically, cluster analysis is related to the problem of density estimation: if you
think of your data as living in a large dimensional space, then you want to find the
regions of the space where the data is densest. If those regions are distinct, or nearly
so, then you have clusters.

177Cluster analysis

EUCLIDEAN DISTANCE

The most common distance is Euclidean distance. The Euclidean distance between two
vectors x and y is defined as

edist(x, y) <- sqrt((x[1]-y[1])^2 + (x[2]-y[2])^2 + ...)

This is the measure people tend to think of when they think of “distance.” Optimizing
squared Euclidean distance is the basis of k-means. Of course, Euclidean distance only
makes sense when all the data is real-valued (quantitative). If the data is categorical
(in particular, binary), then other distances can be used.

HAMMING DISTANCE

For categorical variables (male/female, or small/medium/large), you can define the
distance as 0 if two points are in the same category, and 1 otherwise. If all the vari-
ables are categorical, then you can use Hamming distance, which counts the number of
mismatches:

hdist(x, y) <- sum((x[1] != y[1]) + (x[2] != y[2]) + ...)

Here, a != b is defined to have a value of 1 if the expression is true, and a value of 0 if
the expression is false.

−0.5

0.0

0.5

−0.6 −0.3 0.0 0.3

PC1

P
C

2

Figure 8.1 An example of data in three clusters

178 CHAPTER 8 Unsupervised methods

 You can also expand categorical variables to indicator variables (as we discussed in
section 7.1.4), one for each level of the variable.

 If the categories are ordered (like small/medium/large) so that some categories
are “closer” to each other than others, then you can convert them to a numerical
sequence. For example, (small/medium/large) might map to (1/2/3). Then you can
use Euclidean distance, or other distances for quantitative data.

MANHATTAN (CITY BLOCK) DISTANCE

Manhattan distance measures distance in the number of horizontal and vertical units
it takes to get from one (real-valued) point to the other (no diagonal moves):

mdist(x, y) <- sum(abs(x[1]-y[1]) + abs(x[2]-y[2]) + ...)

This is also known as L1 distance (and squared Euclidean distance is L2 distance).

COSINE SIMILARITY

Cosine similarity is a common similarity metric in text analysis. It measures the small-
est angle between two vectors (the angle theta between two vectors is assumed to be
between 0 and 90 degrees). Two perpendicular vectors (theta = 90 degrees) are the
most dissimilar; the cosine of 90 degrees is 0. Two parallel vectors are the most similar
(identical, if you assume they’re both based at the origin); the cosine of 0 degrees is 1.
From elementary geometry, you can derive that the cosine of the angle between two
vectors is given by the normalized dot product between the two vectors:

dot(x, y) <- sum(x[1]*y[1] + x[2]*y[2] + ...)
cossim(x, y) <- dot(x, y)/(sqrt(dot(x,x)*dot(y,y)))

You can turn the cosine similarity into a pseudo distance by subtracting it from
1.0 (though to get an actual metric, you should use 1 - 2*acos(cossim(x,y))/pi).

 Different distance metrics will give you different clusters, as will different cluster-
ing algorithms. The application domain may give you a hint as to the most appropri-
ate distance, or you can try several distance metrics. In this chapter, we’ll use
(squared) Euclidean distance, as it’s the most natural distance for quantitative data.

8.1.2 Preparing the data

To demonstrate clustering, we’ll use a small dataset from 1973 on protein consump-
tion from nine different food groups in 25 countries in Europe.1 The goal is to group
the countries based on patterns in their protein consumption. The dataset is loaded
into R as a data frame called protein, as shown in the next listing.

1 The original dataset can be found at http://mng.bz/y2Vw. A tab-separated text file with the data can be found
at https://github.com/WinVector/zmPDSwR/tree/master/Protein/. The data file is called protein.txt; addi-
tional information can be found in the file protein_README.txt.

http://mng.bz/y2Vw
https://github.com/WinVector/zmPDSwR/tree/master/Protein/

179Cluster analysis

protein <- read.table(“protein.txt”, sep=”\t”, header=TRUE)
summary(protein)

Country RedMeat WhiteMeat Eggs
Albania : 1 Min. : 4.400 Min. : 1.400 Min. :0.500
Austria : 1 1st Qu.: 7.800 1st Qu.: 4.900 1st Qu.:2.700
Belgium : 1 Median : 9.500 Median : 7.800 Median :2.900
Bulgaria : 1 Mean : 9.828 Mean : 7.896 Mean :2.936
Czechoslovakia: 1 3rd Qu.:10.600 3rd Qu.:10.800 3rd Qu.:3.700
Denmark : 1 Max. :18.000 Max. :14.000 Max. :4.700
(Other) :19

Milk Fish Cereals Starch
Min. : 4.90 Min. : 0.200 Min. :18.60 Min. :0.600
1st Qu.:11.10 1st Qu.: 2.100 1st Qu.:24.30 1st Qu.:3.100
Median :17.60 Median : 3.400 Median :28.00 Median :4.700
Mean :17.11 Mean : 4.284 Mean :32.25 Mean :4.276
3rd Qu.:23.30 3rd Qu.: 5.800 3rd Qu.:40.10 3rd Qu.:5.700
Max. :33.70 Max. :14.200 Max. :56.70 Max. :6.500

Nuts Fr.Veg
Min. :0.700 Min. :1.400
1st Qu.:1.500 1st Qu.:2.900
Median :2.400 Median :3.800
Mean :3.072 Mean :4.136
3rd Qu.:4.700 3rd Qu.:4.900
Max. :7.800 Max. :7.900

UNITS AND SCALING

The documentation for this dataset doesn’t mention what the units of measurement
are, though we can assume all the columns are measured in the same units. This is
important: units (or more precisely, disparity in units) affect what clusterings an algo-
rithm will discover. If you measure vital statistics of your subjects as age in years, height
in feet, and weight in pounds, you’ll get different distances—and possibly different
clusters—than if you measure age in years, height in meters, and weight in kilograms.

 Ideally, you want a unit of change in each coordinate to represent the same degree
of difference. In the protein dataset, we assume that the measurements are all in the
same units, so it might seem that we’re okay. This may well be a correct assumption, but
different food groups provide different amounts of protein. Animal-based food
sources in general have more grams of protein per serving than plant-based food
sources, so one could argue that a change in consumption of 5 grams is a bigger differ-
ence in terms of vegetable consumption than it is in terms of red meat consumption.

 One way to try to make the clustering more coordinate-free is to transform all the
columns to have a mean value of 0 and a standard deviation of 1. This makes the stan-
dard deviation the unit of measurement in each coordinate. Assuming that your train-
ing data has a distribution that accurately represents the population at large, then a
standard deviation represents approximately the same degree of difference in every
coordinate. You can scale the data in R using the function scale().

Listing 8.1 Reading the protein data

180 CHAPTER 8 Unsupervised methods

vars.to.use <- colnames(protein)[-1]
pmatrix <- scale(protein[,vars.to.use])

pcenter <- attr(pmatrix, "scaled:center")

pscale <- attr(pmatrix, "scaled:scale")

Now on to clustering. We’ll start with hierarchical.

8.1.3 Hierarchical clustering with hclust()

The hclust() function takes as input a distance matrix (as an object of class dist),
which records the distances between all pairs of points in the data (using any one of
a variety of metrics). It returns a dendrogram: a tree that represents the nested clus-
ters. hclust() uses one of a variety of clustering methods to produce a tree that
records the nested cluster structure. You can compute the distance matrix using the
function dist().

 dist() will calculate distance functions using the (squared) Euclidean distance
(method="euclidean"), the Manhattan distance (method="manhattan"), and some-
thing like the Hamming distance, when categorical variables are expanded to indica-
tors (method="binary"). If you want to use another distance metric, you’ll have to
compute the appropriate distance matrix and convert it to a dist object using the
as.dist() call (see help(dist) for further details).

 Let’s cluster the protein data. We’ll use Ward’s method, which starts out with each
data point as an individual cluster and merges clusters iteratively so as to minimize the
total within sum of squares (WSS) of the clustering (we’ll explain more about WSS later in
the chapter).

d <- dist(pmatrix, method="euclidean")

pfit <- hclust(d, method="ward")

plot(pfit, labels=protein$Country)

The dendrogram suggests five clusters (as shown in figure 8.2). You can draw the rect-
angles on the dendrogram using the function rect.hclust():

rect.hclust(pfit, k=5)

Listing 8.2 Rescaling the dataset

Listing 8.3 Hierarchical clustering

The output of scale() is a matrix. For the purposes of this
chapter, you can think of a matrix as a data frame with all

numeric columns (this isn’t strictly true, but it’s close enough).

Use all the
columns

except the
first

(Country).
The scale() function annotates its output
with two attributes—scaled:center
returns the mean values of all the
columns, and scaled:scale returns the
standard deviations. You’ll store these
away so you can “unscale” the data later.

Create the distance matrix.

Do the clustering.

Plot the dendrogram.

181Cluster analysis

To extract the members of each cluster from the hclust object, use cutree().

groups <- cutree(pfit, k=5)

print_clusters <- function(labels, k) {
for(i in 1:k) {

print(paste("cluster", i))
print(protein[labels==i,c("Country","RedMeat","Fish","Fr.Veg")])

}
}

> print_clusters(groups, 5)
[1] "cluster 1"

Country RedMeat Fish Fr.Veg
1 Albania 10.1 0.2 1.7
4 Bulgaria 7.8 1.2 4.2
18 Romania 6.2 1.0 2.8
25 Yugoslavia 4.4 0.6 3.2
[1] "cluster 2"

Country RedMeat Fish Fr.Veg
2 Austria 8.9 2.1 4.3
3 Belgium 13.5 4.5 4.0
9 France 18.0 5.7 6.5
12 Ireland 13.9 2.2 2.9
14 Netherlands 9.5 2.5 3.7
21 Switzerland 13.1 2.3 4.9
22 UK 17.4 4.3 3.3
24 W Germany 11.4 3.4 3.8
[1] "cluster 3"

Country RedMeat Fish Fr.Veg
5 Czechoslovakia 9.7 2.0 4.0
7 E Germany 8.4 5.4 3.6
11 Hungary 5.3 0.3 4.2

Listing 8.4 Extracting the clusters found by hclust()

Fi
nl

an
d

N
or

w
ay

D
en

m
ar

k
S

w
ed

en
H

un
ga

ry
U

S
S

R
P

ol
an

d
C

ze
ch

os
lo

va
ki

a
E

 G
er

m
an

y
S

w
itz

er
la

nd
A

us
tri

a
N

et
he

rla
nd

s
Ire

la
nd

B
el

gi
um

W
 G

er
m

an
y

Fr
an

ce U
K

A
lb

an
ia

B
ul

ga
ria

R
om

an
ia

Yu
go

sl
av

ia
G

re
ec

e
Ita

ly
P

or
tu

ga
l

S
pa

in

0
5

15

Cluster Dendrogram

hclust (*, "ward")
d

H
ei

gh
t

Figure 8.2 Dendrogram of countries clustered by protein consumption

A convenience function for printing
out the countries in each cluster,

along with the values for red meat,
fish, and fruit/vegetable

consumption. We’ll use this
function throughout this section.

Note that the function is hardcoded
for the protein dataset.

182 CHAPTER 8 Unsupervised methods

16 Poland 6.9 3.0 6.6
23 USSR 9.3 3.0 2.9
[1] "cluster 4"

Country RedMeat Fish Fr.Veg
6 Denmark 10.6 9.9 2.4
8 Finland 9.5 5.8 1.4
15 Norway 9.4 9.7 2.7
20 Sweden 9.9 7.5 2.0
[1] "cluster 5"

Country RedMeat Fish Fr.Veg
10 Greece 10.2 5.9 6.5
13 Italy 9.0 3.4 6.7
17 Portugal 6.2 14.2 7.9
19 Spain 7.1 7.0 7.2

There’s a certain logic to these clusters: the countries in each cluster tend to be in the
same geographical region. It makes sense that countries in the same region would
have similar dietary habits. You can also see that

 Cluster 2 is made of countries with higher-than-average red meat consumption.
 Cluster 4 contains countries with higher-than-average fish consumption but low

produce consumption.
 Cluster 5 contains countries with high fish and produce consumption.

This dataset has only 25 points; it’s harder to “eyeball” the clusters and the cluster
members when there are very many data points. In the next few sections, we’ll look at
some ways to examine clusters more holistically.

VISUALIZING CLUSTERS

As we mentioned in chapter 3, visualization is an effective way to get an overall view of
the data, or in this case, the clusters. We can try to visualize the clustering by project-
ing the data onto the first two principal components of the data.2 If N is the number of
variables that describe the data, then the principal components describe the hyperel-
lipsoid in N-space that bounds the data. If you order the principal components by the
length of the hyperellipsoid’s corresponding axes (longest first), then the first two
principal components describe a plane in N-space that captures as much of the varia-
tion of the data as can be captured in two dimensions. We’ll use the prcomp() call to
do the principal components decomposition.

library(ggplot2)
princ <- prcomp(pmatrix)
nComp <- 2
project <- predict(princ, newdata=pmatrix)[,1:nComp]

2 We can project the data onto any two of the principal components, but the first two are the most likely to show
useful information.

Listing 8.5 Projecting the clusters on the first two principal components

Calculate the principal
components of the data.

The predict() function
will rotate the data into
the space described by
the principal
components. We only
want the projection on
the first two axes.

183Cluster analysis

project.plus <- cbind(as.data.frame(project),
cluster=as.factor(groups),
country=protein$Country)

ggplot(project.plus, aes(x=PC1, y=PC2)) +
geom_point(aes(shape=cluster)) +
geom_text(aes(label=country),

hjust=0, vjust=1)

You can see in figure 8.3 that the Romania/Yugoslavia/Bulgaria/Albania cluster and
the Mediterranean cluster (Spain and so on) are separated from the others. The
other three clusters co-mingle in this projection, though they’re probably more sepa-
rated in other projections.

BOOTSTRAP EVALUATION OF CLUSTERS

An important question when evaluating clusters is whether a given cluster is “real”—
does the cluster represent actual structure in the data, or is it an artifact of the cluster-
ing algorithm? As you’ll see, this is especially important with clustering algorithms like
k-means, where the user has to specify the number of clusters a priori. It’s been our
experience that clustering algorithms will often produce several clusters that repre-
sent actual structure or relationships in the data, and then one or two clusters that are
buckets that represent “other” or “miscellaneous.” Clusters of “other” tend to be made
up of data points that have no real relationship to each other; they just don’t fit any-
where else.

Create a data frame with the
transformed data, along with
the cluster label and country
label of each point.

Plot it.

Austria

Belgium

Bulgaria

Czechoslovakia
Denmark

E Germany

Finland

France Greece

HungaryIreland

Italy

Netherlands

Norway

Poland

Portugal

Romania

Spain

SwedenSwitzerland
UK

USSR

W Germany

0

1

-1 0 1
PC1

P
C

2

cluster

1

2

3

4

5

Alb

Yugoslav

Figure 8.3 Plot of countries clustered by protein consumption, projected onto first two
principal components

184 CHAPTER 8 Unsupervised methods

 One way to assess whether a cluster represents true structure is to see if the cluster
holds up under plausible variations in the dataset. The fpc package has a function
called clusterboot() that uses bootstrap resampling to evaluate how stable a given
cluster is.3 clusterboot() is an integrated function that both performs the clustering
and evaluates the final produced clusters. It has interfaces to a number of R clustering
algorithms, including both hclust and kmeans.

 clusterboot’s algorithm uses the Jaccard coefficient, a similarity measure between
sets. The Jaccard similarity between two sets A and B is the ratio of the number of ele-
ments in the intersection of A and B over the number of elements in the union of A
and B. The basic general strategy is as follows:

1 Cluster the data as usual.
2 Draw a new dataset (of the same size as the original) by resampling the original

dataset with replacement (meaning that some of the data points may show up
more than once, and others not at all). Cluster the new dataset.

3 For every cluster in the original clustering, find the most similar cluster in the
new clustering (the one that gives the maximum Jaccard coefficient) and
record that value. If this maximum Jaccard coefficient is less than 0.5, the origi-
nal cluster is considered to be dissolved—it didn’t show up in the new clustering.
A cluster that’s dissolved too often is probably not a “real” cluster.

4 Repeat steps 2–3 several times.

The cluster stability of each cluster in the original clustering is the mean value of its
Jaccard coefficient over all the bootstrap iterations. As a rule of thumb, clusters with a
stability value less than 0.6 should be considered unstable. Values between 0.6 and 0.75
indicate that the cluster is measuring a pattern in the data, but there isn’t high cer-
tainty about which points should be clustered together. Clusters with stability values
above about 0.85 can be considered highly stable (they’re likely to be real clusters).

 Different clustering algorithms can give different stability values, even when the
algorithms produce highly similar clusterings, so clusterboot() is also measuring
how stable the clustering algorithm is.

 Let’s run clusterboot() on the protein data, using hierarchical clustering with
five clusters.

library(fpc)

kbest.p<-5

3 For a full description of the algorithm, see Christian Henning, “Cluster-wise assessment of cluster stability,”
Research Report 271, Dept. of Statistical Science, University College London, December 2006. The report can
be found online at http://mng.bz/3XzA.

Listing 8.6 Running clusterboot() on the protein data

Load the fpc package. You may have to install it first. We’ll
discuss installing R packages in appendix A.

Set the desired
number of clusters.

185Cluster analysis

cboot.hclust <- clusterboot(pmatrix,clustermethod=hclustCBI,
method="ward", k=kbest.p)

> summary(cboot.hclust$result)
Length Class Mode

result 7 hclust list
noise 1 -none- logical
nc 1 -none- numeric
clusterlist 5 -none- list
partition 25 -none- numeric
clustermethod 1 -none- character
nccl 1 -none- numeric

> groups<-cboot.hclust$result$partition
> print_clusters(groups, kbest.p)
[1] "cluster 1"

Country RedMeat Fish Fr.Veg
1 Albania 10.1 0.2 1.7
4 Bulgaria 7.8 1.2 4.2
18 Romania 6.2 1.0 2.8
25 Yugoslavia 4.4 0.6 3.2
[1] "cluster 2"

Country RedMeat Fish Fr.Veg
2 Austria 8.9 2.1 4.3
3 Belgium 13.5 4.5 4.0
9 France 18.0 5.7 6.5
12 Ireland 13.9 2.2 2.9
14 Netherlands 9.5 2.5 3.7
21 Switzerland 13.1 2.3 4.9
22 UK 17.4 4.3 3.3
24 W Germany 11.4 3.4 3.8
[1] "cluster 3"

Country RedMeat Fish Fr.Veg
5 Czechoslovakia 9.7 2.0 4.0
7 E Germany 8.4 5.4 3.6
11 Hungary 5.3 0.3 4.2
16 Poland 6.9 3.0 6.6
23 USSR 9.3 3.0 2.9
[1] "cluster 4"

Country RedMeat Fish Fr.Veg
6 Denmark 10.6 9.9 2.4
8 Finland 9.5 5.8 1.4
15 Norway 9.4 9.7 2.7
20 Sweden 9.9 7.5 2.0
[1] "cluster 5"

Country RedMeat Fish Fr.Veg
10 Greece 10.2 5.9 6.5
13 Italy 9.0 3.4 6.7
17 Portugal 6.2 14.2 7.9
19 Spain 7.1 7.0 7.2
> cboot.hclust$bootmean

Run clusterboot() with hclust ('clustermethod=hclustCBI') using
Ward’s method ('method="ward"') and kbest.p clusters

('k=kbest.p'). Return the results in an object called cboot.hclust.

The results of the clustering are in
cboot.hclust$result. The output of the hclust()
function is in cboot.hclust$result$result.

cboot.hclust$result$partition
returns a vector of cluster
labels.

The clusters are the same as
those produced by a direct
call to hclust().

The vector of
cluster stabilities.

186 CHAPTER 8 Unsupervised methods

[1] 0.7905000 0.7990913 0.6173056 0.9312857 0.7560000
> cboot.hclust$bootbrd
[1] 25 11 47 8 35

The clusterboot() results show that the cluster of countries with high fish consump-
tion (cluster 4) is highly stable. Clusters 1 and 2 are also quite stable; cluster 5 less so
(you can see in figure 8.4 that the members of cluster 5 are separated from the other
countries, but also fairly separated from each other). Cluster 3 has the characteristics
of what we’ve been calling the “other” cluster.

clusterboot() assumes that you know the number of clusters, k. We eyeballed the
appropriate k from the dendrogram, but this isn’t always feasible with a large dataset.
Can we pick a plausible k in a more automated fashion? We’ll look at this question in
the next section.

PICKING THE NUMBER OF CLUSTERS

There are a number of heuristics and rules-of-thumb for picking clusters; a given heu-
ristic will work better on some datasets than others. It’s best to take advantage of

The count of how many times each cluster
was dissolved. By default clusterboot()
runs 100 bootstrap iterations.

Austria

Belgium

Bulgaria

Czechoslovakia
Denmark

E Germany

Finland

France Greece

HungaryIreland

Italy

Netherlands

Norway

Poland

Portugal

Romania

Spain

SwedenSwitzerland
UK

USSR

W Germany

0

1

-1 0 1
PC1

P
C

2

cluster

1

2

3

4

5

Alb

Yugoslav

Cluster 5

Figure 8.4 Cluster 5: The Mediterranean cluster. Its members are separated from the other
clusters, but also from each other.

187Cluster analysis

domain knowledge to help set the number of clusters, if that’s possible. Otherwise, try
a variety of heuristics, and perhaps a few different values of k.

Total within sum of squares
One simple heuristic is to compute the total within sum of squares (WSS) for different val-
ues of k and look for an “elbow” in the curve. Define the cluster’s centroid as the point
that is the mean value of all the points in the cluster. The within sum of squares for a
single cluster is the average squared distance of each point in the cluster from the
cluster’s centroid. The total within sum of squares is the sum of the within sum of
squares of all the clusters. We show the calculation in the following listing.

sqr_edist <- function(x, y) {
sum((x-y)^2)

}

wss.cluster <- function(clustermat) {
c0 <- apply(clustermat, 2, FUN=mean)
sum(apply(clustermat, 1, FUN=function(row){sqr_edist(row,c0)}))

}

wss.total <- function(dmatrix, labels) {
wsstot <- 0
k <- length(unique(labels))
for(i in 1:k)

wsstot <- wsstot + wss.cluster(subset(dmatrix, labels==i))
wsstot

}

The total WSS will decrease as the number of clusters increases, because each cluster
will be smaller and tighter. The hope is that the rate at which the WSS decreases will
slow down for k beyond the optimal number of clusters. In other words, the graph of
WSS versus k should flatten out beyond the optimal k, so the optimal k will be at the
“elbow” of the graph. Unfortunately, this elbow can be difficult to see.

Calinski-Harabasz index
The Calinski-Harabasz index of a clustering is the ratio of the between-cluster variance
(which is essentially the variance of all the cluster centroids from the dataset’s grand
centroid) to the total within-cluster variance (basically, the average WSS of the clusters
in the clustering). For a given dataset, the total sum of squares (TSS) is the squared dis-
tance of all the data points from the dataset’s centroid. The TSS is independent of the
clustering. If WSS(k) is the total WSS of a clustering with k clusters, then the between
sum of squares BSS(k) of the clustering is given by BSS(k) = TSS - WSS(k). WSS(k) mea-
sures how close the points in a cluster are to each other. BSS(k) measures how far

Listing 8.7 Calculating total within sum of squares

Function to calculate squared
distance between two vectors.

Function to calculate the WSS for a single
cluster, which is represented as a matrix
(one row for every point).

Calculate the squared difference of every
point in the cluster from the centroid,
and sum all the distances.

Calculate the centroid of the cluster
(the mean of all the points).

Function to compute the total
WSS from a set of data points
and cluster labels.

Extract each cluster, calculate the
cluster’s WSS, and sum all the values.

188 CHAPTER 8 Unsupervised methods

apart the clusters are from each other. A good clustering has a small WSS(k) and a
large BSS(k).

 The within-cluster variance W is given by WSS(k)/(n-k), where n is the number of
points in the dataset. The between-cluster variance B is given by BSS(k)/(k-1). The
within-cluster variance will decrease as k increases; the rate of decrease should slow
down past the optimal k. The between-cluster variance will increase as k, but the rate
of increase should slow down past the optimal k. So in theory, the ratio of B to W
should be maximized at the optimal k.

 Let’s write a function to calculate the Calinski-Harabasz (CH) index. The function
will accommodate both a kmeans clustering and an hclust clustering.

totss <- function(dmatrix) {

grandmean <- apply(dmatrix, 2, FUN=mean)

sum(apply(dmatrix, 1, FUN=function(row){sqr_edist(row, grandmean)}))

}

ch_criterion <- function(dmatrix, kmax, method="kmeans") {

if(!(method %in% c("kmeans", "hclust"))) {

stop("method must be one of c('kmeans', 'hclust')")

}

npts <- dim(dmatrix)[1] # number of rows.

totss <- totss(dmatrix)

wss <- numeric(kmax)

crit <- numeric(kmax)

wss[1] <- (npts-1)*sum(apply(dmatrix, 2, var))

for(k in 2:kmax) {

if(method=="kmeans") {

clustering<-kmeans(dmatrix, k, nstart=10, iter.max=100)

wss[k] <- clustering$tot.withinss

}else { # hclust

d <- dist(dmatrix, method="euclidean")

pfit <- hclust(d, method="ward")

labels <- cutree(pfit, k=k)

wss[k] <- wss.total(dmatrix, labels)

}

}

Listing 8.8 The Calinski-Harabasz index

Convenience function to calculate
the total sum of squares.

A function to calculate the CH index for a
number of clusters from 1 to kmax.

The total sum of squares is
independent of the clustering.

Calculate WSS for k=1
(which is really just total
sum of squares).

Calculate WSS for k from 2 to kmax. kmeans()
returns the total WSS as one of its outputs.

For hclust(), calculate total WSS by hand.

189Cluster analysis

bss <- totss - wss

crit.num <- bss/(0:(kmax-1))

crit.denom <- wss/(npts - 1:kmax)

list(crit = crit.num/crit.denom, wss = wss, totss = totss)

}

We can calculate both indices for the protein dataset and plot them.

library(reshape2)

clustcrit <- ch_criterion(pmatrix, 10, method="hclust")

critframe <- data.frame(k=1:10, ch=scale(clustcrit$crit),

wss=scale(clustcrit$wss))

critframe <- melt(critframe, id.vars=c("k"),

variable.name="measure",

value.name="score")

ggplot(critframe, aes(x=k, y=score, color=measure)) +

geom_point(aes(shape=measure)) + geom_line(aes(linetype=measure)) +

scale_x_continuous(breaks=1:10, labels=1:10)

Looking at figure 8.5, you see that the CH criterion is maximized at k=2, with another
local maximum at k=5. If you squint your eyes, you can convince yourself that the WSS
plot has an elbow at k=2. The k=2 clustering corresponds to the first split of the den-
drogram in figure 8.2; if you use clusterboot() to do the clustering, you’ll see that
the clusters are highly stable, though perhaps not very informative.

 There are several other indices that you can try when picking k. The gap statistic4 is
an attempt to automate the “elbow finding” on the WSS curve. It works best when the
data comes from a mix of populations that all have approximately Gaussian distribu-
tions (a mixture of Gaussian). We’ll see one more measure, the average silhouette width,
when we discuss kmeans().

Listing 8.9 Evaluating clusterings with different numbers of clusters

4 See Robert Tibshirani, Guenther Walther, and Trevor Hastie, “Estimating the number of clusters in a data set
via the gap statistic,” Journal of the Royal Statistical Society B, 2001, 63(2), pp. 411-423; www.stanford.edu/
~hastie/Papers/gap.pdf.

Calculate BSS for k from 1 to kmax.

Normalize BSS by k-1.

Normalize WSS by npts - k.

Return a vector of CH indices and of WSS for k from
1 to kmax. Also return total sum of squares.

Load the reshape2 package
(for the melt() function).

Calculate
both

criteria
for 1–10
clusters.

Create a data frame
with the number of
clusters, the CH
criterion, and the WSS
criterion. We’ll scale
both the CH and WSS
criteria to similar
ranges so that we can
plot them both on the
same graph.

Use the melt() function to
put the data frame in a
shape suitable for ggplot.

Plot it.

www.stanford.edu/~hastie/Papers/gap.pdf
www.stanford.edu/~hastie/Papers/gap.pdf

190 CHAPTER 8 Unsupervised methods

8.1.4 The k-means algorithm

K-means is a popular clustering algorithm when the data is all numeric and the dis-
tance metric is squared Euclidean (though you could in theory run it with other
distance metrics). It’s fairly ad hoc and has the major disadvantage that you must pick
k in advance. On the plus side, it’s easy to implement (one reason it’s so popular) and
can be faster than hierarchical clustering on large datasets. It works best on data that
looks like a mixture of Gaussians (which the protein data unfortunately doesn’t
appear to be).

THE KMEANS() FUNCTION
The function to run k-means in R is kmeans(). The output of kmeans() includes the
cluster labels, the centers (centroids) of the clusters, the total sum of squares, total
WSS, total BSS, and the WSS of each cluster. The k-means algorithm is illustrated in fig-
ure 8.6, with k = 2.

 This algorithm isn’t guaranteed to have a unique stopping point. K-means can be
fairly unstable, in that the final clusters depend on the initial cluster centers. It’s good
practice to run k-means several times with different random starts, and then select the
clustering with the lowest total WSS. The kmeans() function can do this automatically,
though it defaults to only using one random start.

−1

0

1

2

1 2 3 4 5 6 7 8 9 10
k

sc
or

e

measure

ch

wss

Figure 8.5 Plot of the Calinski-Harabasz and WSS indices for 1–10 clusters, on protein data

191Cluster analysis

Let’s run kmeans() on the protein data (scaled to 0 mean and unit standard devia-
tion, as before). We’ll use k=5, as shown in the next listing.

> pclusters <- kmeans(pmatrix, kbest.p, nstart=100, iter.max=100)
> summary(pclusters)

Length Class Mode
cluster 25 -none- numeric
centers 45 -none- numeric
totss 1 -none- numeric
withinss 5 -none- numeric
tot.withinss 1 -none- numeric
betweenss 1 -none- numeric
size 5 -none- numeric

> pclusters$centers
RedMeat WhiteMeat Eggs Milk Fish

1 -0.807569986 -0.8719354 -1.55330561 -1.0783324 -1.0386379
2 0.006572897 -0.2290150 0.19147892 1.3458748 1.1582546
3 -0.570049402 0.5803879 -0.08589708 -0.4604938 -0.4537795
4 1.011180399 0.7421332 0.94084150 0.5700581 -0.2671539
5 -0.508801956 -1.1088009 -0.41248496 -0.8320414 0.9819154

Cereals Starch Nuts Fr.Veg
1 1.7200335 -1.4234267 0.9961313 -0.64360439
2 -0.8722721 0.1676780 -0.9553392 -1.11480485
3 0.3181839 0.7857609 -0.2679180 0.06873983

Listing 8.10 Running k-means with k=5

Cluster Dendrogram

Select k
cluster centers
at random.

1 Assign every data
point to the nearest
cluster center. These
are the clusters.

2

Reassign all data
points to the nearest
(new) cluster center.

4

Repeat steps 3 and 4 until the points stop moving, or you
have reached a maximum number of iterations.

5

For each
cluster, compute
its actual center.

3

Figure 8.6 The k-means procedure. The two cluster centers are represented by the outlined
star and diamond.

Run kmeans() with five clusters
(kbest.p=5), 100 random starts, and
100 maximum iterations per run.

kmeans()
returns all
the sum of

squares
measures.

pclusters$centers is a matrix
whose rows are the centroids
of the clusters. Note that
pclusters$centers is in the
scaled coordinates, not the
original protein coordinates.

192 CHAPTER 8 Unsupervised methods

4 -0.6877583 0.2288743 -0.5083895 0.02161979
5 0.1300253 -0.1842010 1.3108846 1.62924487
> pclusters$size
[1] 4 4 5 8 4

> groups <- pclusters$cluster
> print_clusters(groups, kbest.p)
[1] "cluster 1"

Country RedMeat Fish Fr.Veg
1 Albania 10.1 0.2 1.7
4 Bulgaria 7.8 1.2 4.2
18 Romania 6.2 1.0 2.8
25 Yugoslavia 4.4 0.6 3.2
[1] "cluster 2"

Country RedMeat Fish Fr.Veg
6 Denmark 10.6 9.9 2.4
8 Finland 9.5 5.8 1.4
15 Norway 9.4 9.7 2.7
20 Sweden 9.9 7.5 2.0
[1] "cluster 3"

Country RedMeat Fish Fr.Veg
5 Czechoslovakia 9.7 2.0 4.0
7 E Germany 8.4 5.4 3.6
11 Hungary 5.3 0.3 4.2
16 Poland 6.9 3.0 6.6
23 USSR 9.3 3.0 2.9
[1] "cluster 4"

Country RedMeat Fish Fr.Veg
2 Austria 8.9 2.1 4.3
3 Belgium 13.5 4.5 4.0
9 France 18.0 5.7 6.5
12 Ireland 13.9 2.2 2.9
14 Netherlands 9.5 2.5 3.7
21 Switzerland 13.1 2.3 4.9
22 UK 17.4 4.3 3.3
24 W Germany 11.4 3.4 3.8
[1] "cluster 5"

Country RedMeat Fish Fr.Veg
10 Greece 10.2 5.9 6.5
13 Italy 9.0 3.4 6.7
17 Portugal 6.2 14.2 7.9
19 Spain 7.1 7.0 7.2

THE KMEANSRUNS() FUNCTION FOR PICKING K
To run kmeans(), you must know k. The fpc package (the same package that has
clusterboot()) has a function called kmeansruns() that calls kmeans() over a range
of k and estimates the best k. It then returns its pick for the best value of k, the output
of kmeans() for that value, and a vector of criterion values as a function of k. Cur-
rently, kmeansruns() has two criteria: the Calinski-Harabasz Index ("ch"), and the aver-
age silhouette width ("asw"; for more about silhouette clustering, see http://mng.bz/
Qe15). It’s a good idea to plot the criterion values over the entire range of k, since you
may see evidence for a k that the algorithm didn’t automatically pick (as we did in fig-
ure 8.5), as we demonstrate in the following listing.

pclusters$size returns
the number of points
in each cluster.
Generally (though not
always) a good
clustering will be fairly
well balanced: no
extremely small
clusters and no
extremely large ones.

pclusters$-
cluster is a

vector of
cluster
labels.

In this case,
kmeans() and
hclust() returned
the same
clustering. This
won’t always
be true.

193Cluster analysis

> clustering.ch <- kmeansruns(pmatrix, krange=1:10, criterion="ch")

> clustering.ch$bestk

[1] 2

> clustering.asw <- kmeansruns(pmatrix, krange=1:10, criterion="asw")

> clustering.asw$bestk

[1] 3

> clustering.ch$crit

[1] 0.000000 14.094814 11.417985 10.418801 10.011797 9.964967

[7] 9.861682 9.412089 9.166676 9.075569

> clustcrit$crit

[1] NaN 12.215107 10.359587 9.690891 10.011797 9.964967

[7] 9.506978 9.092065 8.822406 8.695065

> critframe <- data.frame(k=1:10, ch=scale(clustering.ch$crit),

asw=scale(clustering.asw$crit))

> critframe <- melt(critframe, id.vars=c("k"),

variable.name="measure",

value.name="score")

> ggplot(critframe, aes(x=k, y=score, color=measure)) +

geom_point(aes(shape=measure)) + geom_line(aes(linetype=measure)) +

scale_x_continuous(breaks=1:10, labels=1:10)

> summary(clustering.ch)

Length Class Mode

cluster 25 -none- numeric

centers 18 -none- numeric

totss 1 -none- numeric

withinss 2 -none- numeric

tot.withinss 1 -none- numeric

betweenss 1 -none- numeric

size 2 -none- numeric

crit 10 -none- numeric

bestk 1 -none- numeric

Figure 8.7 shows the results of the two clustering criteria provided by kmeansruns.
They suggest two to three clusters as the best choice. However, if you compare the val-
ues of clustering.ch$crit and clustcrit$crit in the listing, you’ll see that the CH

Listing 8.11 Plotting cluster criteria

Run kmeansruns() from 1–10 clusters, and the CH
criterion. By default, kmeansruns() uses 100 random

starts and 100 maximum iterations per run.

The CH criterion picks two clusters.

Run kmeansruns() from 1–10
clusters, and the average

silhouette width criterion. Average
silhouette width picks 3 clusters.

The vector of
criterion values
is called crit.

Compare the CH values for kmeans() and hclust().
They’re not quite the same, because the two

algorithms didn’t pick the same clusters.

Plot the
values for

the two
criteria.

kmeansruns() also
returns the output of
kmeans for k=bestk.

194 CHAPTER 8 Unsupervised methods

criterion produces different curves for kmeans() and hclust() clusterings, but it did
pick the same value (which probably means it picked the same clusters) for k=5, and
k=6, which might be taken as evidence that either five or six is the optimal choice for k.

CLUSTERBOOT() REVISITED

We can run clusterboot() using the k-means algorithm, as well.

kbest.p<-5
cboot<-clusterboot(pmatrix, clustermethod=kmeansCBI,

runs=100,iter.max=100,
krange=kbest.p, seed=15555)

> groups <- cboot$result$partition
> print_clusters(cboot$result$partition, kbest.p)
[1] "cluster 1"

Country RedMeat Fish Fr.Veg
1 Albania 10.1 0.2 1.7
4 Bulgaria 7.8 1.2 4.2
18 Romania 6.2 1.0 2.8
25 Yugoslavia 4.4 0.6 3.2
[1] "cluster 2"

Country RedMeat Fish Fr.Veg
6 Denmark 10.6 9.9 2.4
8 Finland 9.5 5.8 1.4

Listing 8.12 Running clusterboot() with k-means

−2

−1

0

1

1 2 3 4 5 6 7 8 9 10
k

sc
or

e

measure

ch

asw

Figure 8.7 Plot of the Calinski-Harabasz and average silhouette width indices for 1–10
clusters, on protein data

We’ve set the seed for the
random generator so the
results are reproducible.

195Cluster analysis

15 Norway 9.4 9.7 2.7
20 Sweden 9.9 7.5 2.0
[1] "cluster 3"

Country RedMeat Fish Fr.Veg
5 Czechoslovakia 9.7 2.0 4.0
7 E Germany 8.4 5.4 3.6
11 Hungary 5.3 0.3 4.2
16 Poland 6.9 3.0 6.6
23 USSR 9.3 3.0 2.9
[1] "cluster 4"

Country RedMeat Fish Fr.Veg
2 Austria 8.9 2.1 4.3
3 Belgium 13.5 4.5 4.0
9 France 18.0 5.7 6.5
12 Ireland 13.9 2.2 2.9
14 Netherlands 9.5 2.5 3.7
21 Switzerland 13.1 2.3 4.9
22 UK 17.4 4.3 3.3
24 W Germany 11.4 3.4 3.8
[1] "cluster 5"

Country RedMeat Fish Fr.Veg
10 Greece 10.2 5.9 6.5
13 Italy 9.0 3.4 6.7
17 Portugal 6.2 14.2 7.9
19 Spain 7.1 7.0 7.2
> cboot$bootmean
[1] 0.8670000 0.8420714 0.6147024 0.7647341 0.7508333
> cboot$bootbrd
[1] 15 20 49 17 32

Note that the stability numbers as given by cboot$bootmean (and the number of times
that the clusters were “dissolved” as given by cboot$bootbrd) are different for the
hierarchical clustering and k-means, even though the discovered clusters are the
same. This shows that the stability of a clustering is partly a function of the clustering
algorithm, not just the data. Again, the fact that both clustering algorithms discovered
the same clusters might be taken as an indication that five is the optimal number of
clusters.

8.1.5 Assigning new points to clusters

Clustering is often used as part of data exploration, or as a precursor to other super-
vised learning methods. But you may want to use the clusters that you discovered to
categorize new data, as well. One common way to do so is to treat the centroid of each
cluster as the representative of the cluster as a whole, and then assign new points to
the cluster with the nearest centroid. Note that if you scaled the original data before
clustering, then you should also scale the new data point the same way before assign-
ing it to a cluster.

196 CHAPTER 8 Unsupervised methods

assign_cluster <- function(newpt, centers, xcenter=0, xscale=1) {

xpt <- (newpt - xcenter)/xscale

dists <- apply(centers, 1, FUN=function(c0){sqr_edist(c0, xpt)})

which.min(dists)

}

Note that the function sqr_edist (the squared Euclidean distance) was defined previ-
ously, in section 8.1.1.

 Let’s look at an example of assigning points to clusters, using synthetic data.

rnorm.multidim <- function(n, mean, sd, colstr="x") {
ndim <- length(mean)
data <- NULL
for(i in 1:ndim) {

col <- rnorm(n, mean=mean[[i]], sd=sd[[i]])
data<-cbind(data, col)

}
cnames <- paste(colstr, 1:ndim, sep='')
colnames(data) <- cnames
data

}

mean1 <- c(1, 1, 1)
sd1 <- c(1, 2, 1)

mean2 <- c(10, -3, 5)
sd2 <- c(2, 1, 2)

mean3 <- c(-5, -5, -5)
sd3 <- c(1.5, 2, 1)

clust1 <- rnorm.multidim(100, mean1, sd1)
clust2 <- rnorm.multidim(100, mean2, sd2)
clust3 <- rnorm.multidim(100, mean3, sd3)
toydata <- rbind(clust3, rbind(clust1, clust2))

Listing 8.13 A function to assign points to a cluster

Listing 8.14 An example of assigning points to clusters

A function to assign a new data point newpt to a clustering described
by centers, a matrix where each row is a cluster centroid. If the data
was scaled (using scale()) before clustering, then xcenter and xscale

are the scaled:center and scaled:scale attributes, respectively.

Center and
scale the
new data

point.
Return the cluster number
of the closest centroid.

Calculate how far the new
data point is from each of

the cluster centers.

A function to generate n
points drawn from a
multidimensional
Gaussian distribution
with centroid mean and
standard deviation sd.
The dimension of the
distribution is given by
the length of the vector
mean.

The parameters for three
Gaussian distributions.

Create a dataset with 100
points each drawn from
the above distributions.

197Cluster analysis

tmatrix <- scale(toydata)
tcenter <- attr(tmatrix, "scaled:center")
tscale<-attr(tmatrix, "scaled:scale")
kbest.t <- 3
tclusters <- kmeans(tmatrix, kbest.t, nstart=100, iter.max=100)

tclusters$size
[1] 100 101 99

unscale <- function(scaledpt, centervec, scalevec) {
scaledpt*scalevec + centervec

}

> unscale(tclusters$centers[1,], tcenter, tscale)
x1 x2 x3

9.978961 -3.097584 4.864689
> mean2
[1] 10 -3 5

> unscale(tclusters$centers[2,], tcenter, tscale)
x1 x2 x3

-4.979523 -4.927404 -4.908949
> mean3
[1] -5 -5 -5

> unscale(tclusters$centers[3,], tcenter, tscale)
x1 x2 x3

1.0003356 1.3037825 0.9571058
> mean1
[1] 1 1 1

> assign_cluster(rnorm.multidim(1, mean1, sd1),
tclusters$centers,
tcenter, tscale)

3
3

> assign_cluster(rnorm.multidim(1, mean2, sd1),
tclusters$centers,
tcenter, tscale)

1
1

Scale
the

dataset.

Store the centering
and scaling parameters
for future use.

Cluster the
dataset, using
k-means with
three clusters.The resulting

clusters are about
the right size.

A function to “unscale”
data points (put them
back in the coordinates
of the original dataset).

Unscale the first centroid.
It corresponds to our
original distribution 2.

The second centroid
corresponds to the
original distribution 3.

The third centroid
corresponds to the
original distribution 1.

Generate a random point
from the original
distribution 1 and assign
it to one of the discovered
clusters.

It’s assigned to cluster 3,
as we would expect.

Generate a random point
from the original distribution
2 and assign it.

It’s assigned
to cluster 1.

198 CHAPTER 8 Unsupervised methods

> assign_cluster(rnorm.multidim(1, mean3, sd1),
tclusters$centers,
tcenter, tscale)

2
2

8.1.6 Clustering takeaways

Here’s what you should remember about clustering:

 The goal of clustering is to discover or draw out similarities among subsets of
your data.

 In a good clustering, points in the same cluster should be more similar (nearer)
to each other than they are to points in other clusters.

 When clustering, the units that each variable is measured in matter. Different
units cause different distances and potentially different clusterings.

 Ideally, you want a unit change in each coordinate to represent the same
degree of change. One way to approximate this is to transform all the columns
to have a mean value of 0 and a standard deviation of 1.0, for example by using
the function scale().

 Clustering is often used for data exploration or as a precursor to supervised
learning methods.

 Like visualization, it’s more iterative and interactive, and less automated than
supervised methods.

 Different clustering algorithms will give different results. You should consider
different approaches, with different numbers of clusters.

 There are many heuristics for estimating the best number of clusters. Again,
you should consider the results from different heuristics and explore various
numbers of clusters.

Sometimes, rather than looking for subsets of data points that are highly similar to
each other, you’d like to know what kind of data (or which data attributes) tend to
occur together. In the next section, we’ll look at one approach to this problem.

8.2 Association rules
Association rule mining is used to find objects or attributes that frequently occur
together—for example, products that are often bought together during a shopping
session, or queries that tend to occur together during a session on a website’s search
engine. Such information can be used to recommend products to shoppers, to place
frequently bundled items together on store shelves, or to redesign websites for easier
navigation.

Generate a random point
from the original
distribution 3 and assign it.

It’s assigned
to cluster 2.

199Association rules

8.2.1 Overview of association rules

The unit of “togetherness” when mining association rules is called a transaction.
Depending on the problem, a transaction could be a single shopping basket, a single
user session on a website, or even a single customer. The objects that comprise a trans-
action are referred to as items in an itemset: the products in the shopping basket, the
pages visited during a website session, the actions of a customer. Sometimes transac-
tions are referred to as baskets, from the shopping basket analogy.

 Mining for association rules occurs in two steps:

1 Look for all the itemsets (subsets of transactions) that occur more often than in
a minimum fraction of the transactions.

2 Turn those itemsets into rules.

Let’s consider the example of books that are checked out from a library. When a
library patron checks out a set of books, that’s a transaction; the books that the patron
checked out are the itemset that comprise the transaction. Table 8.1 represents a data-
base of transactions.

Looking over all the transactions in table 8.1, you find that The Hobbit is in 50% of all
transactions, and The Princess Bride is in 40% of them (you run a library where fantasy
is quite popular). Both books are checked out together in 30% of all transaction. We’d
say the support of the itemset {The Hobbit, The Princess Bride} is 30%. Of the five transac-
tions that include The Hobbit, three (60%) also include The Princess Bride. So you can
make a rule “People who check out The Hobbit also check out The Princess Bride.” This
rule should be correct (according to your data) 60% of the time. We’d say that the con-
fidence of the rule is 60%. Conversely, of the four times The Princess Bride was checked

Table 8.1 A database of library transactions

Transaction ID Books checked out

1 The Hobbit, The Princess Bride

2 The Princess Bride, The Last Unicorn

3 The Hobbit

4 The Neverending Story

5 The Last Unicorn

6 The Hobbit, The Princess Bride, The Fellowship of the Ring

7 The Hobbit, The Fellowship of the Ring, The Two Towers, The Return of the King

8 The Fellowship of the Ring, The Two Towers, The Return of the King

9 The Hobbit, The Princess Bride, The Last Unicorn

10 The Last Unicorn, The Neverending Story

200 CHAPTER 8 Unsupervised methods

out, The Hobbit appeared three times, or 75% of the time. So the rule “People who
check out The Princess Bride also check out The Hobbit” has 75% confidence.

 Let’s define support and confidence formally. The rule “if X, then Y” means that
every time you see the itemset X in a transaction, you expect to also see Y (with a given
confidence). For the apriori algorithm (which we’ll look at in this section), Y is always
an itemset with one item. Suppose that your database of transactions is called T. Then
support(X) is the number of transactions that contain X divided by the total number
of transactions in T. The confidence of the rule “if X, then Y” is given by conf(X=>Y) =
support(union(X,Y))/support(X), where union(X, Y) means that you’re referring
to itemsets that contain both the items in X and the items in Y.

 The goal in association rule mining is to find all the interesting rules in the data-
base with at least a given minimum support (say, 10%) and a minimum given confi-
dence (say, 60%).

8.2.2 The example problem

For our example problem, let’s imagine that we’re working for a bookstore, and we
want to identify books that our customers are interested in, based on (all of) their pre-
vious purchases and book interests. We can get information about their book interests
two ways: either they’ve purchased a book from us, or they’ve rated the book on our
website (even if they bought the book somewhere else). In this case, a transaction is a
customer, and an itemset is all the books that they’ve expressed an interest in, either
by purchase or by rating.

 The data that we’ll use is based on data collected in 2004 from the book commu-
nity Book-Crossing5 for research conducted at the Institut für Informatik, University
of Freiburg.6 We’ve condensed the information into a single tab-separated text file
called bookdata.tsv. Each row of the file consists of a user ID, a book title (which we’ve
designed as a unique ID for each book), and the rating (which we won’t actually use in
this example):

"token" "userid" "rating" "title"
" a light in the storm" 55927 0 " A Light in the Storm"

The token column contains lower-cased column strings; we used the tokens to identify
books with different ISBNs (the original book IDs) that had the same title except for

5 The original data repository can be found at http://mng.bz/2052. Since some artifacts in the original files
caused errors when reading into R, we’re providing copies of the data as a prepared RData object:https://
github.com/WinVector/zmPDSwR/blob/master/Bookdata/bxBooks.RData. The prepared version of the
data that we’ll use in this section is at https://github.com/WinVector/zmPDSwR/blob/master/Bookdata/
bookdata.tsv.gz. Further information and scripts for preparing the data can be found at https://github.com/
WinVector/zmPDSwR/tree/master/Bookdata.

6 The researchers’ original paper is “Improving Recommendation Lists Through Topic Diversification,” Cai-
Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, Georg Lausen; Proceedings of the 14th International
World Wide Web Conference (WWW ’05), May 10-14, 2005, Chiba, Japan. It can be found online at http://
mng.bz/7trR.

http://mng.bz/2052
https://github.com/WinVector/zmPDSwR/blob/master/Bookdata/bxBooks.RData
https://github.com/WinVector/zmPDSwR/blob/master/Bookdata/bxBooks.RData
https://github.com/WinVector/zmPDSwR/blob/master/Bookdata/bookdata.tsv.gz
https://github.com/WinVector/zmPDSwR/blob/master/Bookdata/bookdata.tsv.gz
https://github.com/WinVector/zmPDSwR/tree/master/Bookdata
https://github.com/WinVector/zmPDSwR/tree/master/Bookdata
http://mng.bz/7trR
http://mng.bz/7trR

201Association rules

casing. The title column holds properly capitalized title strings; these are unique
per book, so we’ll use them as book IDs.

 In this format, the transaction (customer) information is diffused through the
data, rather than being all in one row; this reflects the way the data would naturally be
stored in a database, since the customer’s activity would be diffused throughout time.
Books generally come in different editions or from different publishers. We’ve con-
densed all different versions into a single item; hence different copies or printings of
Little Women will all map to the same item ID in our data (namely, the title Little
Women).

 The original data includes approximately a million ratings of 271,379 books from
278,858 readers. Our data will have fewer books due to the mapping that we discussed
earlier.

 Now we’re ready to mine.

8.2.3 Mining association rules with the arules package

We’ll use the package arules for association rule mining. arules includes an imple-
mentation of the popular association rule algorithm apriori, as well as implementa-
tions to read in and examine transaction data.7 The package uses special data types to
hold and manipulate the data; we’ll explore these data types as we work the example.

READING IN THE DATA

We can read the data directly from the bookdata.tsv.gz file into the object bookbaskets
using the function read.transaction().

library(arules)

bookbaskets <- read.transactions("bookdata.tsv.gz", format="single",

sep="\t",

cols=c("userid", "title"),

rm.duplicates=T)

The read.transactions() function reads data in two formats: the format where every
row corresponds to a single item (like bookdata.tsv.gz), and a format where each
row corresponds to a single transaction, possibly with a transaction ID, like table 8.1.
To read data in the first format, use the argument format="single"; to read data in
the second format, use the argument format="basket".

7 For a more comprehensive introduction to arules than we can give in this chapter, please see Hahsler, Grin,
Hornik, and Buchta, “Introduction to arules—A computational environment for mining association rules and
frequent item sets,” online at cran.r-project.org/web/packages/arules/vignettes/arules.pdf.

Listing 8.15 Reading in the book data

Load the arules package.
Specify the file and

the file format.

Specify the column separator (a tab).

Specify the column of
transaction IDs and of item

IDs, respectively.

Tell the function
to look for and
remove duplicate
entries (for
example, multiple
entries for The
Hobbit by the
same user).

cran.r-project.org/web/packages/arules/vignettes/arules.pdf

202 CHAPTER 8 Unsupervised methods

 It sometimes happens that a reader will buy one edition of a book and then later
add a rating for that book under a different edition. Because of the way we’re repre-
senting books for this example, these two actions will result in duplicate entries. The
rm.duplicates=T argument will eliminate them. It will also output some (not too use-
ful) diagnostics about the duplicates.

 Once you’ve read in the data, you can inspect the resulting object.

EXAMINING THE DATA

Transactions are represented as a special object called transactions. You can think of
a transactions object as a 0/1 matrix, with one row for every transaction and one col-
umn for every possible item. The matrix entry (i,j) is 1 if the i transaction contains
item j. There are a number of calls you can use to examine the transaction data, as the
next listing shows.

> class(bookbaskets)
[1] "transactions"
attr(,"package")
[1] "arules"
> bookbaskets
transactions in sparse format with
92108 transactions (rows) and
220447 items (columns)

> dim(bookbaskets)
[1] 92108 220447
> colnames(bookbaskets)[1:5]
[1] " A Light in the Storm:[...]"
[2] " Always Have Popsicles"
[3] " Apple Magic"
[4] " Ask Lily"
[5] " Beyond IBM: Leadership Marketing and Finance for the 1990s"
> rownames(bookbaskets)[1:5]
[1] "10" "1000" "100001" "100002" "100004"

You can examine the distribution of transaction sizes (or basket sizes) with the func-
tion size():

> basketSizes <- size(bookbaskets)
> summary(basketSizes)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 1.0 1.0 11.1 4.0 10250.0

Most customers (at least half of them, in fact) only expressed interest in one book. But
someone has expressed interest in more than 10,000! You probably want to look more
closely at the size distribution to see what’s going on.

Listing 8.16 Examining the transaction data

The object is of class transactions.

Printing the object tells
you its dimensions.

You can also use dim() to see
the dimensions of the matrix.

The columns are
labeled by book title.

The rows are labeled
by customer.

203Association rules

> quantile(basketSizes, probs=seq(0,1,0.1))
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1 1 1 1 1 1 2 3 5 13 10253

> library(ggplot2)
> ggplot(data.frame(count=basketSizes)) +
geom_density(aes(x=count), binwidth=1) +
scale_x_log10()

Figure 8.8 shows the distribution of basket sizes. 90% of customers expressed interest in
fewer than 15 books; most of the remaining customers expressed interest in up to about
100 books or so (the call quantile(basketSizes, probs=c(0.99, 1)) will show you that
99% of customers expressed interest in 179 books or fewer). Still, there are a few people
who have expressed interest in several hundred, or even several thousand books.

Which books are they reading? The function itemFrequency() will give you the rela-
tive frequency of each book in the transaction data:

> bookFreq <- itemFrequency(bookbaskets)
summary(bookFreq)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.086e-05 1.086e-05 1.086e-05 5.035e-05 3.257e-05 2.716e-02

> sum(bookFreq)
[1] 11.09909

Listing 8.17 Examining the size distribution

Look at the basket size
distribution, in 10% increments.

Plot the distribution to
get a better look.

0

2

4

10 1000
count

de
ns

ity

Figure 8.8 A density plot of basket sizes

204 CHAPTER 8 Unsupervised methods

Note that the frequencies don’t sum to 1. You can recover the number of times that
each book occurred in the data by normalizing the item frequencies and multiplying
by the total number of items.

> bookCount <- (bookFreq/sum(bookFreq))*sum(basketSizes)
> summary(bookCount)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 1.000 4.637 3.000 2502.000

> orderedBooks <- sort(bookCount, decreasing=T)
> orderedBooks[1:10]

Wild Animus
2502

The Lovely Bones: A Novel
1295

She's Come Undone
934

The Da Vinci Code
905

Harry Potter and the Sorcerer's Stone
832

The Nanny Diaries: A Novel
821

A Painted House
819

Bridget Jones's Diary
772

The Secret Life of Bees
762

Divine Secrets of the Ya-Ya Sisterhood: A Novel
737

> orderedBooks[1]/dim(bookbaskets)[1]
Wild Animus
0.02716376

The last observation in the preceding listing highlights one of the issues with mining
high-dimensional data: when you have thousands of variables, or thousands of items,
almost every event is rare. Keep this point in mind when deciding on support thresh-
olds for rule mining; your thresholds will often need to be quite low.

 Before we get to the rule mining, let’s refine the data a bit more. As we observed
earlier, half of the customers in the data only expressed interest in a single book.
Since you want to find books that occur together in people’s interest lists, you can’t
make any direct use of people who haven’t yet shown interest in multiple books. You
can restrict the dataset to customers who have expressed interest in at least two books:

> bookbaskets_use <- bookbaskets[basketSizes > 1]
> dim(bookbaskets_use)
[1] 40822 220447

Now you’re ready to look for association rules.

Listing 8.18 Finding the ten most frequent books

Get the absolute
count of book
occurrences.

Sort the count and
list the 10 most
popular books.

The most popular book
in the dataset occurred
in fewer than 3% of the
baskets.

205Association rules

THE APRIORI() FUNCTION

In order to mine rules, you need to decide on a minimum support level and a mini-
mum threshold level. For this example, let’s try restricting the itemsets that we’ll con-
sider to those that are supported by at least 100 people. This leads to a minimum
support of 100/dim(bookbaskets_use)[1] = 100/40822. This is about 0.002, or 0.2%.
We’ll use a confidence threshold of 75%.

> rules <- apriori(bookbaskets_use,
parameter =list(support = 0.002, confidence=0.75))

> summary(rules)
set of 191 rules

rule length distribution (lhs + rhs):sizes
2 3 4 5

11 100 66 14

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.000 3.000 3.000 3.435 4.000 5.000

summary of quality measures:
support confidence lift

Min. :0.002009 Min. :0.7500 Min. : 40.89
1st Qu.:0.002131 1st Qu.:0.8113 1st Qu.: 86.44
Median :0.002278 Median :0.8468 Median :131.36
Mean :0.002593 Mean :0.8569 Mean :129.68
3rd Qu.:0.002695 3rd Qu.:0.9065 3rd Qu.:158.77
Max. :0.005830 Max. :0.9882 Max. :321.89

mining info:
data ntransactions support confidence

bookbaskets_use 40822 0.002 0.75

The quality measures on the rules include not only the rules’ support and confidence,
but also a quantity called lift. Lift compares the frequency of an observed pattern with
how often you’d expect to see that pattern just by chance. The lift of a rule “if X, then
Y” is given by support(union(X, Y))/(support(X)*support(Y)). If the lift is near 1,
then there’s a good chance that the pattern you observed is occurring just by chance.
The larger the lift, the more likely that the pattern is “real.” In this case, all the discov-
ered rules have a lift of at least 40, so they’re likely to be real patterns in customer
behavior.

INSPECTING AND EVALUATING RULES

There are also other metrics and interest measures you can use to evaluate the rules by
using the function interestMeasure(). We’ll look at two of these measures: coverage
and fishersExactTest. Coverage is the support of the left side of the rule (X); it tells

Listing 8.19 Finding the association rules

Call apriori() with a minimum support of
0.002 and a minimum confidence of 0.75.

The summary of the
apriori() output reports the
number of rules found;...

...the distribution of rule
lengths (in this example,
most rules contain 3
items—2 on the left
side, X (lhs), and one on
the right side, Y (rhs));...

...a summary of rule
quality measures,
including support
and confidence;...

...and some information on
how apriori() was called.

206 CHAPTER 8 Unsupervised methods

you how often the rule would be applied in the dataset. Fisher’s exact test is a significance
test for whether an observed pattern is real, or chance (the same thing lift measures;
Fisher’s test is more formal). Fisher’s exact test returns the p-value, or the probability
that you would see the observed pattern by chance; you want the p-value to be small.

> measures <- interestMeasure(rules,
+ method=c("coverage", "fishersExactTest"),
+ transactions=bookbaskets_use)
> summary(measures)

coverage fishersExactTest
Min. :0.002082 Min. : 0.000e+00
1st Qu.:0.002511 1st Qu.: 0.000e+00
Median :0.002719 Median : 0.000e+00
Mean :0.003039 Mean :5.080e-138
3rd Qu.:0.003160 3rd Qu.: 0.000e+00
Max. :0.006982 Max. :9.702e-136

The coverage of the discovered rules ranges from 0.002–0.007, equivalent to a range
of about 100–250 people. All the p-values from Fisher’s test are small, so it’s likely that
the rules reflect actual customer behavior patterns.

 You can also call interestMeasure() with methods support, confidence, and
lift, among others. This would be useful in our example if you wanted to get sup-
port, confidence, and lift estimates for the full dataset bookbaskets, rather than the
filtered dataset bookbaskets_use—or for a subset of the data, for instance, only cus-
tomers from the United States.

 The function inspect() pretty-prints the rules. The function sort() allows you to
sort the rules by a quality or interest measure, like confidence. To print the five most
confident rules in the dataset, you could use the following command:

inspect(head((sort(rules, by="confidence")), n=5))

For legibility, we show the output of this command in table 8.2.

Listing 8.20 Scoring rules

Table 8.2 The five most confident rules discovered in the data

Left side Right side Support Confidence Lift

Four to Score
High Five
Seven Up
Two for the Dough

Three to Get Deadly 0.002 0.988 165

The call to interestMeasure() takes as
arguments the discovered rules,...

...a list of
interest

measures
to

apply,...

...and a dataset to evaluate the interest
measures over. This is usually the same

set used to mine the rules, but it needn’t
be. For instance, you can evaluate the

rules over the full dataset, bookbaskets,
to get coverage estimates that reflect all

the customers, not just the ones who
showed interest in more than one book.

207Association rules

There are two things to notice in table 8.2. First, the rules concern books that come in
series: the numbered series of novels about bounty hunter Stephanie Plum, and the
Harry Potter series. So these rules essentially say that if a reader has read four Stepha-
nie Plum or Harry Potter books, they’re almost sure to buy another one.

 The second thing to notice is that rules 1, 4, and 5 are permutations of the same
itemset. This is likely to happen when the rules get long.

RESTRICTING WHICH ITEMS TO MINE

You can restrict which items appear in the left side or right side of a rule. Suppose
you’re interested specifically in books that tend to co-occur with the novel The Lovely
Bones. You can do this by restricting which books appear on the right side of the rule,
using the appearance parameter.

brules <- apriori(bookbaskets_use,

parameter =list(support = 0.001,

confidence=0.6),

appearance=list(rhs=c("The Lovely Bones: A Novel"),

default="lhs"))

> summary(brules)

set of 46 rules

Harry Potter and the Order of the
Phoenix
Harry Potter and the Prisoner of
Azkaban
Harry Potter and the Sorcerer’s
Stone

Harry Potter and the
Chamber of Secrets

0.003 0.966 73

Four to Score
High Five
One for the Money
Two for the Dough

Three to Get Deadly 0.002 0.966 162

Four to Score
Seven Up
Three to Get Deadly
Two for the Dough

High Five 0.002 0.966 181

High Five
Seven Up
Three to Get Deadly
Two for the Dough

Four to Score 0.002 0.966 168

Listing 8.21 Finding rules with restrictions

Table 8.2 The five most confident rules discovered in the data (continued)

Left side Right side Support Confidence Lift

Relax the minimum support
to 0.001 and the minimum
confidence to 0.6.

Only The Lovely Bones is
allowed to appear on the

right side of the rules.

By default, all the books can go
into the left side of the rules.

208 CHAPTER 8 Unsupervised methods

rule length distribution (lhs + rhs):sizes

3 4

44 2

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.000 3.000 3.000 3.043 3.000 4.000

summary of quality measures:
support confidence lift

Min. :0.001004 Min. :0.6000 Min. :21.81
1st Qu.:0.001029 1st Qu.:0.6118 1st Qu.:22.24
Median :0.001102 Median :0.6258 Median :22.75
Mean :0.001132 Mean :0.6365 Mean :23.14
3rd Qu.:0.001219 3rd Qu.:0.6457 3rd Qu.:23.47
Max. :0.001396 Max. :0.7455 Max. :27.10

mining info:
data ntransactions support confidence

bookbaskets_use 40822 0.001 0.6

The supports, confidences, and lifts are lower than they were in our previous exam-
ple, but the lifts are still much greater than 1, so it’s likely that the rules reflect real
customer behavior patterns.

 Let’s inspect the rules, sorted by confidence. Since they’ll all have the same right
side, you can use the lhs() function to only look at the left sides.

brulesConf <- sort(brules, by="confidence")

> inspect(head(lhs(brulesConf), n=5))
items

1 {Divine Secrets of the Ya-Ya Sisterhood: A Novel,
Lucky : A Memoir}

2 {Lucky : A Memoir,
The Notebook}

3 {Lucky : A Memoir,
Wild Animus}

4 {Midwives: A Novel,
Wicked: The Life and Times of the Wicked Witch of the West}

5 {Lucky : A Memoir,
Summer Sisters}

Note that four of the five most confident rules include Lucky: A Memoir in the left side,
which perhaps isn’t surprising, since Lucky was written by the author of The Lovely
Bones. Suppose you want to find out about works by other authors that are interesting
to people who showed interest in The Lovely Bones; you can use subset() to filter down
to only rules that don’t include Lucky.

Listing 8.22 Inspecting rules

Sort the rules by confidence.

Use the lhs() function
to get the left itemsets
of each rule; then
inspect the top five.

209Summary

brulesSub <- subset(brules, subset=!(lhs %in% "Lucky : A Memoir"))
brulesConf <- sort(brulesSub, by="confidence")

> inspect(head(lhs(brulesConf), n=5))
items

1 {Midwives: A Novel,
Wicked: The Life and Times of the Wicked Witch of the West}

2 {She's Come Undone,
The Secret Life of Bees,
Wild Animus}

3 {A Walk to Remember,
The Nanny Diaries: A Novel}

4 {Beloved,
The Red Tent}

5 {The Da Vinci Code,
The Reader}

These examples show that association rule mining is often highly interactive. To get
interesting rules, you must often set the support and confidence levels fairly low; as a
result you can get many, many rules. Some rules will be more interesting or surprising
to you than others; to find them requires sorting the rules by different interest mea-
sures, or perhaps restricting yourself to specific subsets of rules.

8.2.4 Association rule takeaways

Here’s what you should remember about association rules:

 The goal of association rule mining is to find relationships in the data: items or
attributes that tend to occur together.

 A good rule “if X, then Y” should occur more often than you’d expect to
observe by chance. You can use lift or Fisher’s exact test to check if this is true.

 When a large number of different possible items can be in a basket (in our exam-
ple, thousands of different books), most events will be rare (have low support).

 Association rule mining is often interactive, as there can be many rules to sort
and sift through.

8.3 Summary
In this chapter, you’ve learned how to find similarities in data using two different clus-
tering methods in R, and how to find items that tend to occur together in data using
association rules. You’ve also learned how to evaluate your discovered clusters and
your discovered rules.

 Unsupervised methods like the ones we’ve covered in this chapter are really more
exploratory in nature. Unlike with supervised methods, there’s no “ground truth” to
evaluate your findings against. But the findings from unsupervised methods can be
the starting point for more focused experiments and modeling.

Listing 8.23 Inspecting rules with restrictions

Restrict to
the subset
of rules
where Lucky
is not in the
left side.

210 CHAPTER 8 Unsupervised methods

 In the last few chapters, we’ve covered the most basic modeling and data analysis
techniques; they’re all good first approaches to consider when you’re starting a new
project. In the next chapter, we’ll touch on a few more advanced methods.

Key takeaways
 Unsupervised methods find structure in the data, often as a prelude to predic-

tive modeling.

 The goal of clustering is to discover or draw out similarities among subsets of
your data.

 When clustering, you’ll find that scaling is important.

 The goal of association rule mining is to find relationships in the data: items or
attributes that tend to occur together.

 In association rule mining, most events will be rare, so support and confidence
levels must often be set low.

Zumel ● Mount

B
usiness analysts and developers are increasingly
collecting, curating, analyzing, and reporting on crucial
business data. The R language and its associated tools

provide a straightforward way to tackle day-to-day data
science tasks without a lot of academic theory or advanced
mathematics.

Practical Data Science with R shows you how to apply the R
programming language and useful statistical techniques to
everyday business situations. Using examples from marketing,
business intelligence, and decision support, it shows you how
to design experiments (such as A/B tests), build predictive
models, and present results to audiences of all levels.

What’s Inside
● Data science for the business professional
● Statistical analysis using the R language
● Project lifecycle, from planning to delivery
● Numerous instantly familiar use cases
● Keys to effective data presentations

This book is accessible to readers without a background in
data science. Some familiarity with basic statistics, R,
or another scripting language is assumed.

Nina Zumel and John Mount are cofounders of a San Francisco-
based data science consulting fi rm. Both hold PhDs from
Carnegie Mellon and blog on statistics, probability,
and computer science at win-vector.com.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/PracticalDataSciencewithR

$49.99 / Can $52.99 [INCLUDING eBOOK]

Practical Data Science with R

DATA SCIENCE

M A N N I N G

“A unique and important
 addition to any data
 scientist’s library.”
—From the Foreword by
Jim Porzak, Cofounder

Bay Area R Users Group

“Covers the process
end-to-end, from data

exploration to modeling
 to delivering the results.”—Nezih Yigitbasi, Intel

“Full of useful gems
for both aspiring and

 experienced data scientists.”
—Fred Rahmanian
Siemens Healthcare

“Hands-on data analysis
 with real-world examples.
 Highly recommended.”—Dr. Kostas Passadis, IPTO

SEE INSERT

